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1) Z(P) must be a positive real function

of p;

2) ?m(P)m2(@) –?21(P)?22(P) = C(P2– 1)”.

Condition 2 implies that both numerator
and denominator are of degree n and it is
readily argued that an impedance function
formed by terminating a section of trans-
mission line in an indeterminant impedance

function will remain indeterminant. Further-

more if Z(P) is normalized so that the coeffi-

cient of P“ in Its denominator is unity then C

equals the terminating resistance.
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Vector Formulations for the Field

Equations in Anisotropic Wave-

guides*

In the following we will exhibit vector
formulations for the equations determining
the different components of the electromag-
netic field in a source-free uniform wave-

guide. All results will be stated without
proof. The derivations are given elsewhere.1
The vector formulations given below are

~pplicable to uniform waveguides contain-
ing anisotropic media restricted only by the

requirement that the permittivity (s) and

permeability (V) dyadics be independent of

the axial coordinate z. For uniform wave-
guides (with the indicated restriction on v

and e) we consider solutions to the Maxwell
equations which display characteristic time
and z dependence of the form exp ;(KZ — cot).

This assumption permits us to eliminate the
z and t dependence from the Maxwell equa-

tions and rewrite these as:
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Here, as iu all the matrix equations which
follow, dot product multiplication is to be
understood for the products of dyadics and
vectors. In (1), E and 27 are, respectively,
the steady-state electric and magnetic fields;
V, is the transverse gradient operator; zo is

the unit vector in the axial direction; 1 is the

unit dyadic; and 1 t is the unit transverse

dyadic:

It is well known that the transverse field

components, Et and Ht, constitute the inde-

pendent field components. To eliminate the
dependent longitudinal components from
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(1) it is convenient to express, e.g., the s where D(K), X, 523 are defined in (7)–(9) and:

dyadic as

(3)

where si is a transverse dyadic, W, and s.~
are vectors, and G is a scalar; i.e.,

A similar representation is chosen for the u
dyadic. It can then be shown that the

(independent) transverse field components
satisfy the following pair of (coupled)

second-order differential equations (trans-

verse vector eigenvalue problem):
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Note that, in general, 1/D(K) does not com-

mute with either !3 or 3 since these contain

differentiation operations. The reader may

verify that the result in (11) reduces to the
equation given by Kalesz for the special case

of an axially magnetized gyromagnetic
medium (i.e., where e is a scalar and

Vf, =g.t =0).
Any solution E., H. to (11) yields, via

(7), an eigenfunction (mode) of the trans-
verse vector eigenvalue problem (5). This

Once solutions to (5) are obtained, the cor-

responding longitudinal field components

can be determined from a knowledge of the

transverse components via
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In general, to obtain solutions to the

transverse vector eigenvalue problem (5) is
a formidable task. We recall that even in the

case of isotropic waveguides such solutions

are usually obtained by replacing the vector

eigenvalue problem by a pair of scalar
eigenvalue problems whose eigenfunctions
are (except in the case of TEM modes) pro-

portional to the longitudinal field compo-
nents. A similar technique maybe employed

in the general auisotropic situation under
consideration here. It can be shown that the
transverse field components are derivable
from the longitudinal field components via

where

D(K) = K4 + CNK2 Tr (ZOXW .zo)(st) + ti4A&
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A, and AP are the determinants of (the matrix
representations of) the w and w dyadics, re-

spectively, and Tr (zo XW. zo X si) is the

trace of (the matrix representation for) the
dyadic ZOXW ..o X% Further, it can be
shown that the longitudinal field components
satisfy the following pair of (coupled)

second-order differential equations (scalar
eigenvalue problem):

procedure is manifestly not valid when

D(K) =0. Therefore, the set of vector eigen-

functions obtained from all the solutions to

(11) becomes complete only when we add

such vector eigenfunctions of (5) which are
admitted when D(K) = O. That these addi-

tional eigenfunctions are the analogs of the
TEM modes in the anisotropic case is evi-
dent from the fact that D(.) = (dpe –.92 for
an isotropic medium with scalar p and e. The
analogy to TEM modes indicated here
should not be taken to imply any TEM-like
properties of these eigenfunctions in the

anisotropic case.
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An Extension of the Reflection Co-

efficient Chart to Include Active

Networks*

INTRODUCTION

At a single frequency, a two-port can be
represented by the scattering matrix [1], [5]

[b] = [.s][a] (la)

bl = sllal + sna~ (lb)

bl = s21a1 + s2%a2 (It)

where s12= szl in the reciprocal two-port. If

one defines an input reflection coefficient
I’~fi = &l/al and a load reflection coefficient
TL =at/bt one can form

~. _ (S122 – SuS22)rL + S11

*n
1 – S22rL

(2)

Eq. (2) can be considered as a mapping
of the rL plane into the I’tn plane. Since this
is a bilinear transformation, angles between
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