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1) Z(p) must be a positive real function

of p;
2) my(pyms(p) —m(P)na(p) = C(P*—1)m

Condition 2 implies that both numerator
and denominator are of degree » and it is
readily argued that an impedance function
formed by terminating a section of trans-
mission line in an indeterminant impedance
function will remain indeterminant. Further-
more if Z(p) is normalized so that the coeffi-
cient of " in its denominator is unity then C
equals the terminating resistance.

Henry J. RIBLET
Microwave Dev. Labs., Inc.
Wellesley, Mass.

Vector Formulations for the Field
Equations in Anisotropic Wave-
guides*

In the following we will exhibit vector
formulations for the equations determining
the different components of the electromag-
netic field in a source-free uniform wave-
guide. All results will be stated without
proof. The derivations are given elsewhere.!
The vector formulations given below are
applicable to uniform waveguides contain-
ing anisotropic media restricted only by the
requirement that the permittivity (¢) and
permeability (u) dyadics be independent of
the axial coordinate 2. For uniform wave-
guides (with the indicated restriction on u
and &) we consider solutions to the Maxwell
equations which display characteristic time
and z dependence of the form exp (ks —wt).
This assumption permits us to eliminate the
z and ¢ dependence from the Maxwell equa-~
tions and rewrite these as:

[ we —V,:Xl—iIch)Xlt]
— Vi X1—ixzoX1; oy

I:zfi] =0

Here, as in all the matrix equations which
follow, dot product multiplication is to be
understood for the products of dyadics and
vectors. In (1), E and H are, respectively,
the steady-state electric and magnetic fields;
V, is the transverse gradient operator; zg is
the unit vector in the axial direction; 1 is the
unit dyadic; and 1; is the unit transverse
dyadic:

Li=1—1,=1— zz. 2

It is well known that the transverse field
components, E; and H,, constitute the inde-
pendent field components. To eliminate the
dependent longitudinal components from
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(1) it is convenient to express, e.g., the €

dyadic as
e [8‘ s"] ®)
€2t €2

where g; is a transverse dyadic, =, and e
are vectors, and ¢, is a scalar; i.e.,

g = g + el + ZoEst + £¢2Z0. (4)

A similar representation is chosen for the u
dyadic. It can then be shown that the
(independent) transverse field components
satisfy the following pair of (coupled)
second-order differential equations (trans-
verse vector eigenvalue problem):
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where D(x), %, B are defined in (7)—(9) and:
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Note that, in general, 1/D(x) does not com-
mute with either B or 9B since these contain
differentiation operations. The reader may
verify that the result in (11) reduces to the
equation given by Kales? for the special case
of an axially magnetized gyromagnetic
medium (Z.e,, where ¢ is a scalar and
Uta'—"yzt:O)-

Any solution E., H, to (11) yields, via
(7), an eigenfunction (mode) of the trans-
verse vector eigenvalue problem (5). This
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Once solutions to (5) are obtained, the cor-
responding longitudinal field components
can be determined from a knowledge of the
transverse components via

EZ
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In general, to obtain solutions to the
transverse vector eigenvalue problem (5) is
a formidable task. We recall that even in the
case of isotropic waveguides such solutions
are usually obtained by replacing the vector
eigenvalue problem by a pair of scalar
eigenvalue problems whose eigenfunctions
are (except in the case of TEM modes) pro-
portional to the longitudinal field compo-
nents. A similar technique may be employed
in the general anisotropic situation under
consideration here. It can be shown that the
transverse field components are derivable
from the longitudinal field components via
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D(x) = x*+ %2 Tr (ZoXu: 20Xer) + DAy,
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Acand A, are the determinants of (the matrix
representations of) the e; and . dyadics, re-
spectively, and Tr (zoXu:-zoXe:) is the
trace of (the matrix representation for) the
dyadic zoXu;-zoXe. Further, it can be
shown that the longitudinal field components
satisfy the following pair of (coupled)
second-order differential equations (scalar
eigenvalue problem):
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procedure is manifestly not valid when
D{x) =0, Therefore, the set of vector eigen-
functions obtained from all the solutions to
(11) becomes complete only when we add
such vector eigenfunctions of (5) which are
admitted when D(x) =0. That these addi-
tional eigenfunctions are the analogs of the
TEM modes in the anisotropic case is evi-
dent from the fact that D(x) = («?ue—«2)? for
an isotropic medium with scalar g and e. The
analogy to TEM modes indicated here
should not be taken to imply any TEM-like
properties of these eigenfunctions in the
anisotropic case.
A. D. BRESLER
Microwave Res. Inst.
Polytechnic Inst. of Brooklyn
Brooklyn, N.Y.
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An Extension of the Reflection Co-
efficient Chart to Include Active
Networks*

INTRODUCTION

At a single frequency, a two-port can be
represented by the scattering matrix [1], [}

[2] = [S]]e] (1a)
by = sua + S0 (1b)
by = s + Sas02 (10)

where si=su in the reciprocal two-port. If
one defines an input reflection coefficient
Tin=D01/a; and a load reflection coefficient

T'z==as/bs one can form

(512 — suse)T'r, + sut
Tip= —o WM LT (9
1 — sl'z,

Eq. (2) can be considered as a mapping
of the T'z plane into the T';, plane. Since this
is a bilinear transformation, angles between
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